
Journal of Statistical Physics, VoL 50, Nos. 1/2, 1988 

Interfacial Properties of a Driven Diffusive System 

Kwan-tai Leung 1 

Received June 19, 1987; revision received October 21, 1987 

A study is made of the low-temperature interfacial properties of a driven system 
with a single conserved density whose bulk properties were first analyzed, using 
computer simulations, by Katz, Lebowitz, and Spohn in 1983. The system 
corresponds to a nearest neighbor interacting lattice gas of charged particles 
(hence conserved order parameter), which are acted upon by a uniform, con- 
stant external electric field E. Starting from a bulk kinetic equation, an integral 
equation for the interface is derived. Nonlocal coupling between different parts 
of the interface arises from local particle conservation. The interface at any angle 
is shown to be stable against small deformations of all wavelengths that are 
large compared to the interfacial width. However, the relaxation rate ~(k) for 
the interface exhibits a strong orientational dependence, which can be 
understood in terms of the modification of nonlocality by E. The wandering of 
the interface is considered. Also, the possible stabilizing effect of periodic boun- 
dary conditions on the orientation toward the direction of E is discussed. 

KEY WORDS: Driven diffusive systems; interface; relaxation rates; nonlocal 
interactions. 

1. I N T R O D U C T I O N  

T h e r e - h a s  been cons iderab le  interest  in the physics  of  dr iven diffusive 
systems in recent  years. (1 10) Us ing  the l anguage  of  cri t ical  phenomena ,  we 

refer here by  the word  "diffusive" to a conserved order  parameter .  These 
systems in their  s implest  form (for ana ly t ic  purposes )  a p p e a r  as a neares t  
ne ighbor  in terac t ing  lat t ice gas of  charged  par t ic les  ac ted  upon  by a 
spat ia l ly  uniform, t empora l ly  cons tan t  ex terna l  electric field. (1) This  mode l  
is in teres t ing for two reasons:  first, it has  interes t ing physical  proper t ies ,  
d i sp lay ing  highly  an i so t rop ic  cri t ical  behav io r  of a new universal i ty  
class, (6'7) and  it has a n o m a l o u s  diffusive behav io r  for d~< 2. (3,4) Second,  it 
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405 

0022-4715/88/0100-0405506.00/0 �9 1988 Plenum Publishing Corporation 



406 Leung 

models some real materials that have some technological applications. (11) 
These materials are commonly known as fast ionic conductors. (12) 

The bulk properties of this model have been quite extensively studied, 
via computer simulations, (1'8) and analytic methods (2'9) on its discrete 
version, as well as via various analytic techniques (3 v,10) on its continuum 
version. However, its low-temperature behavior, especially that associated 
with the interfaces, has yet been investigated. This paper is devoted to such 
a study. 

Although the interfacial properties were not studied in simulations, 
typical configurations generated by the computer seem to suggest that 
those configurations with interfaces parallel to the external field E are the 
most stable ones. This is in contrast to the case of E = 0 ,  where large 
clusters would orient in arbitrary directions, reflecting rotational 
invariance. However, since the sample size is rather small (30), the boun- 
dary may stabilize the interface to lie along E, thus masking the genuine 
effect of E. Moreover, the small size of the sample does not allow a clear- 
cut separation of length scales. 2 The level of resolution of the simulation 
results thus far is too low for quantitative measurement of interfacial 
properties. 

In all subsequent sections except Section 5, we consider an interface 

parallel to E. This paper is organized as follows. In Section 2 the interface 
equation is derived from the bulk kinetic equation, after making some low- 
temperature approximations. The properties of the Green's function that 
mediates nonlocal coupling among different parts of the interface are dis- 
cussed in Section 3. The relaxation mode co(k) under small disturbances 
about a planar interface is given in Section4. Section 5 contains a 
derivation of an equation for a tilted planar interface; and it displays the 
orientational dependence of the relaxation after deformation. To under- 
stand the possible effects of the boundary on the orientation of the 
interface, we compute in Section 6 the time evolutions of the interface for 
prescribed initial configurations. The wandering of the interface is 
computed in Section 7. We conclude this work in Section 8. The Appendix 
presents a derivation of the Green's function for an interface parallel to E. 

2. E Q U A T I O N  OF M O T I O N  FOR A PLANAR 
INTERFACE PARALLEL TO E 

As in other studies, ~3 7) our starting point is again the time-dependent 
Ginzburg-Landau-type equation of motion, obtained after some coarse 

2 E.g., the lattice constant, the width of the interface, wavelength of interfacial deformation, 
and a new length introduced by E, which will be defined in Section 3. 
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graining of the Ising spins over some length scale greater than microscopic 
scales, but much smaller than the bulk correlation length 4: 

a-5 ~ = - v -  [ E o ( ~ ) ]  + ,~[rH a~ + r• - (V2)~n~so] ~ + ,~ V2~ 3 + 

(2.1) 

where 2 is the kinetic coefficient, E is the external field, Xfl is the coordinate 
along E, a(~b) is the conductivity, and f is the usual Gaussian noise. 

2 2 (V)~ni~o is a short-hand notation for a combination of anisotropic fourth 
derivatives. In accord with the prevalence of interfaces parallel to E from 
simulation results, we consider in this and the following sections except 
Section 5 the interfacial properties of such a parallel interface. We shall 
assume Ising symmetry for the system throughout this work, so that 
a(~b) = ~r(- ~b).3 Our primary concern here is its low-temperature properties. 
Thus, we expand the density variable about a stationary solution 
corresponding to a planar interface parallel to E: 

~b(x, t) = ~b~(z) + O(x, t) (2.2) 

where the "classical" stationary solution is of the form of a kink. As an 
example, ~b~(z)= ~b~ tanh(~o~Z), representing a planar interface of width 
40 .4 The detailed form of the profile is nevertheless not important in deter- 
mining the interfacial properties, as the bulk degrees of freedom are 
averaged over to obtain an interfacial description. As a matter of notation, 
the d-dimensional coordinates x are henceforth denoted as 

x~- (Xll, x •  (YJl, Y• z) 

with x •  z) being the (d-1) -d imens iona l  coordinates orthogonal to 
E, and z being one of these d -  1 coordinates, arbitrarily chosen, to which 
the interface is normal. Substituting (2.1) into the kinetic equation results 
in an equation of motion for the small deviation ~: 

0 
= - ( V  )aniso'] ~ _gt 4 , ,~E6c(Z) allO + ,~[rHa~j + r • V 2 2 2 

g 
+ 2 ~ ( 0 ~  + V~_) ~b~(z)0 + f (2.3) 

3 After the submission of this work, I was shown a preprint by A. Hern~indez-Machado and 
David Jasnow (Pittsburgh preprint), who worked out the linear stability of the interface 
parallel to E in the absence of Ising symmetry and the presence of an asymptotic concen- 
tration gradient. Their results agree with ours (Section 4) in the appropriate limits. 

4 K.-t. Leung, unpublished results. The author succeeded in fitting a tanh profile of the density 
for the fully anisotropic bulk equation, provided that certain conditions among the 
parameters are satisfied. However, he believes that these solutions are not unique. 



408 Leung 

where we have redefined E such that the term - E  do a(~bc) in (2.1) becomes 
E~b~. Now E has the same dimension as the corresponding parameter in the 
bulk study. (6) The -O~o-(~b~) and ~b~ differ only in details near the interface. 
Since we are concerned with phenomena of length scale >> r we make a 
low-temperature approximation ~b~(z)2~ ~b~ to get 

8 I ( ru  + 2  ~ ~ ~ 2E~bc(z) 0HO + 2 g ~ ) O ~ l + ( r •  (2.4) 

where the higher derivatives 2 2 (V)aniso 0 have been dropped because they do 
not lead to long-wavelength instability, since the coefficients rll + �89 g~b~ and 

~g~bo~ are generally positive, for ~b~ ~ - 6 r / g .  These coefficients play r •  2 
the role of anisotropic diffusion coefficients. This anisotropy can be 
removed trivially by rescaling x u and x• 5 Calling the rescaled coefficient 
D, we obtain a diffusion equation with an additional driving force term: 

8 
O = 2Ed~c(z) c~u ~ + D V2~k + ~ (2.5) 

which is supposed to be valid at low temperature for small deviations 
away from the stationary state ~b c. 

The interface equation is derived by means of the Green's function 
technique, following the same line of argument as in Langer and Turski. (u) 
To do this, we first define the Green's function conjugate to (2.5) by 

[-8/c~t'-DV'2+ZE(bc(Z')811] G(pl p ' ) = f ( p - p ' )  (2.6) 

where for brevity we denote p = (x, t) = (Yu, Y• z, t). The Green's function 
G vanishes when its arguments go to infinity; and it satisfies causality: 
G oc O(t- t'). By means of Green's theorem, 

D Iv dV' [ff(p') V'2G(p I p') - G(pl p') V'2~O(p')] 

= D iv dV' V'. [O(P') V'G(p I p') - G(pIp') V'0(p ')]  

= D i s  dS ' . [~(p ' )V 'G(p[p ' ) -G(p[p ' )V ' t~(p ' )]  (2.7) 
++S 

where V is the volume of the system, excluding the interface, and S+ and 
S are the surfaces immediately next to the interface (see Fig. 1). The 

5 However, the anisotropy in the noise correlation cannot  be removed simultaneously. 
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Fig. 1. The bulk volume V, the interface, and the surface S+ and S_ used in Green's 
theorem. 

contribution from the surface at infinity vanishes because G and ~ vanish 
there. Since dS' points in opposite directions for S+ and S_ ,  the con- 
tinuity of O(P') across the interface implies that the terms in V'G cancel 
out. Eliminating V'2G and V'2~p using the equations of motion for G and 
and integrating over ~_+ ~ dr' gives 

f +~ f. - D  dt' dS' .[G(plp')V'~s(p')]  
oo + + S  

f = dt' dV'{~s(p')[-Ot,+2E~Jc(z')?~l ] G ( p J p ' ) - ~ ( p ' ) 6 ( p - p ' )  
- - o 0  U 

- G(plp')[O,,- ).E~<(z')01~ ] 78 + G(ptp') r 

= dt' dV' [-Ot'(~bG)+2E~b<(z')O~l(t~G)+G(]-~b(p) 
- - o 0  V 

)r+~ a'r' 
dt' fs§ dS' IIJ ~bG 

= ,l  E ( ~ ~ - (~ ~ j co - ~  

+~+~ dt' J dr'  G~ -- ~s(p) (2.8) 
oo 

where x / g - [ l  + (Vf)2] m is just the inverse of the local direction cosine 
on the interface. The lhs can be expressed in terms of the currents across 
the interface, which are driven by Vi/s: 
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t "  

lhs = dt' t_ dS' I1" [Jdiffusion(S ) - -  Jdiffusion(S+ ) ]  G(pl p') 
+ 

= dt'I_ dS'fi ' .[J(S_)-J(S+)]G(plp') 
~ S  + 

- f dt' f dS' fi'" [-Jinduced(S ) - -  J induced(S+ ) ]  G(pIp') 
S+ 

f ds' G( lr') 

+ 2(b~2E f dt' fs+ dS' ~ l p ( p ' )  G(pt p') (2.9) 

where h' is the unit normal to the interface pointing in the + ~ direction. 
The net flux of particles across the interface in the first term has been 
related to the motion of the interface. Here ~ is the unit vector along E. 
Therefore the induced-current contributions to both sides of the equation 
cancel out. 6 

We now write dS/x/~= dd-ly, and use the Gibbs-Thomson relation 
to express the deviation ~b(S+) at the interface as 2~boo~. Here 

6 6 
~,U= 6f(y, t) f dS'= 6f(y, t) f d d - l y ' ~  

is the curvature of the interface at f (y ,  t). We eventually obtain the 
equation of motion for the interface in the form of an integral equation: 

3 
-4  6f(y, t) f d a - l Y ' ~  

+ o0 ~ t ,  

=f_~ dt' f dU-~y ' G(y, tly', t ' ; f l f ' ) -~f (y  t') 

1 f + ~  f +W2-- dt' dg'G(y, tly',t';flz')((y',z',t') (2.10) 
z.~ ov - -  et3 

Most of the subsequent analysis is based on this equation. It is in the 
same form as that of Ref. 13, with a different Green's function, which 
contains all the E dependence. Also, a noise term is added, (14) which will be 
necessary in calculating any correlation function. 

6 This cancellation is generally true for Jinduced(~b) even in ~b, which holds for systems having 
particle-hole symmetry. The case when this current is odd in ~b has not yet been explored. 
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Before we close this section, a few comments are in order here: (1) 
This equation is highly nonlinear: nonlinearities are contained both in the 
curvature term (6/6f) ~ d d- ly x / ~  and in G. (2) The nonlocal nature of the 
interaction among the interfacial degrees of freedom mediated by the 
Green's function is a general feature for systems with local conservation. 
Since G decays exponentially, the interaction is short-ranged. (3) Given the 
correlation of the bulk noise ~, it is straightforward within the linear 
approximation to work out that of the noise on the interface. This is given 
in Section 7. 

3. GREEN'S FUNCTIONS 

In this section we briefly discuss the functional form of the Green's 
functions for an interface parallel to E. Note first that the interracial 
degrees of freedom interact in a nonlocal way, the extent of which is 
specified by G. Now, G contains all the E dependence for the interface 
because the noise correlation is also related to G. Thus, it is essential to 
know its explicit functional form for an understanding of the influence of 
both the local conservation and E on the interaction of the interracial 
degrees of freedom. Since we will see that the planar interface is stable 
against small deformations of all wavelengths, it is sufficient to consider 
only the linearized equation of motion. So G(y, t] y', t'; z = 0]z' = 0) should 
capture the essential qualitative features of the nonlocal coupling. For com- 
parison, we also show the corresponding expressions below for the 
undriven case of model A (nonconserved order parameter) and model B 
(conserved order parameter), following the nomenclature of Hohenberg 
and Halperin. (19) In momentum-frequency space, one finds (see the Appen- 
dix) 

c(k, ~o;0t0)= 

const 
[2D(k 2 - iD-lo9) 1/2 ] - t  

D - l [  (k 2 _ iD-lo9 _ ikekll)l/2 

+ (k 2 _ iD-~o9 + ikEkl l )m]  -1 

(model A) 

(model B) 

(Er 

(3.1) 

where k is a (d-1)-dimensional  wavevector, and k e = - 2 D - l E ( ~  is a 
wavenumber introduced by the driving force E. The square roots are 
defined as (Rei~ ~/2 = R~/2e i~ where 0 is as shown in Fig. 2. Fourier-trans- 
forming to real time, we have G(k, t l t'; 0] 0) = 0 for t -  t' < 0, due to the 
fact that G has no singularity in the upper half m-plane, which reflects the 
causality condition satisfied by G. For t - t ' >  0, we get 

822/50/1-2-27 
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const x 6(t - t') (model A) 

1 ,] 1/2 
4reD(t-- t ' ) /  e x p [ - k 2 D ( t -  ( ) ] (model  B) 

G(k, t t C; 010) = (3.2) 
(.4rcD(l ~ ,~/2 - t'),] e x p [ - k 2 h ( t -  t ')] 

s i n [ k e k l j D ( t - t ' ) ]  
x ( E r  

k E k l l D ( t - t '  ) 

where we have computed exactly the ~ &o for the E 4:0 case by distorting 
the contour of integration into the lower half m-plane and then integrating 
the contributions along the four branch cuts. Further Fourier-transforming 
to real space y-= (YH, Yi) yields 

G(y, tly' ,  t'; 010)= 

where 

const x 3 d- l(y _ y,) 6(t - t') (model A) 

1 ~d/2 _ [y_y , i  2 
4reD( t -  t ' ) /  exp 4 D ( t -  t ' )  

(model B) 

(4~D(~ ,~a/2[ _ly_y,12,]  
- t ' ) )  ~,exp - ~  22 t-~ J 

x J(Yll -- Ylq, t -- t') (E r O) 

(3.3) 

1f+1 J(YlI, t) =-~ -1 d~ e x p ( - y l l k E e / 2 - k a e D t ~ 2 / 4 )  (3.4) 

Hence all E dependence is contained in a single multiplicative factor J, 
which represents the effect of the driving force on the nonlocal interaction 

0=77" 

-77" 

0=71- 
-77" 

)(  

k, i co 

Fig. 2. The branches and branch cuts for G for E # 0. The branch cuts merge into the real 
axis as E ~ 0. 
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along the Ylt direction. Associated with the length scale k{ 1, E introduces a 
new time scale rE=(Dk~) -'. It is then natural to consider the limiting 
forms of J for t -  t' ~ rE and t -  t' >> rE: 

1. t - t '  ~ E. For y t l = 0  

1 
f+ l  d~ exp( -k~Dt~2/4)  ~ 1 J(o, t )=~  1 

Thus, G ~ e x p [ - y ~ j 4 D ( t - t ' ) ]  as in model B. 
For Ylr 5 0  

J(Yli, t)~ ~ f+l do~ exp(--YHkeo(2 ) 
--1 

= (sinh A)/A 

= f l + A Z / 6 + - - . ,  A ~ I  (3.5) 
~�89 ..., JA[ >> 1 

where we denote yilkJ2 as A. So, for ]Y]t] >>k~71 the level of nonlocal 
interaction is enhanced by a factor (1/[ytt[ke) exp([ yttike/2). Significant 
modification to the pure model B behavior of the form 
exp[-y~j4D(t-t ')] occurs only for length [Yii[ > k ~ ' .  Conversely, sup- 
pression of nonlocality is observed for t - t' > rE as follows: 

2. t - t ' ~ >  rE. We consider three different regions: 

(i) For [YII[ ~ k {  1, we get 

7[ 1/2 ( T~TE ~ 1/2 
J(Yll, t)~ kE[D~--_t,)]vZ-\lt_t, l /  ~1 

Hence the level of nonlocal interaction is suppressed by this factor. 
(ii) For 

k{ 1 '~ l Ylii ~ kED(t- t') = [D(t - t ')] 1/2[(t-- t')/rE] 1/2 

we get the same suppression from J as in region (i). 

(iii) For kED(t-t ')~lytt[, we get 

J(y,,, t),.~1f+ll d~ exp(-kE y,,~/2) 

= (sinh A)/A 

1 
~ IA[- '  exp IA[ 

= (1/[yll [ke) exp(] y N [ kE/2) ~> 1 (3.6) 
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Hence, only when lYlll goes beyond the large length scale keD(t- t ' )  set 
by E would the model B behavior be modified to 

G oc (1/lyltlke)exp(lylllke/2)exp[-y~l/4D(t-t')] (3.7) 

which represents an enhancement of nonlocality over the model B behavior 
at the tail for large l Yll I. 

Figure 3 displays two typical examples of a comparison between G(E) 
and G(E= 0) for t - t ' <  re and t -  t ' >  r E. To summarize, the new length 
scale kE ~ and time scale rE mark the borders beyond which deviations from 
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Fig. 3. Two typical examples of the behavior of the Green's function G(y, t[0, 0; 0 i0)  along 
the direction of E, (a) for t > r E and (b) for t < zE, showing the suppression at short distances 
and enhancement  at long distances of the nonlocal coupling due to E (solid line), in com- 
parison to that of E = 0  (dashed lines). The magnitudes of G's  for E = 0  are properly 
normalized to 1 at YH =0 .  
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model B behavior are observed. These modifications help to explain in an 
intuitive way the new relaxational behavior to be discussed in the next 
section. 

4. S T A B I L I T Y  OF T H E  P L A N A R  I N T E R F A C E  

The planar interface f = 0  is obviously a stationary solution of the 
interface equation of motion corresponding to f = 0 .  7 To examine its 
stability against small deformations, we linearize 8 (2.10) with respect to f 
and look for a solution of the form 

f ( y ,  t) = fo(k) exp(ik �9 y - icot) 

where k is (d -1) -d imens iona l .  Substituting this into (2.10) yields 

- ~k2fo(k) = G(k, co; O lO)[ - icofo(k)] 

By (2.11), the dispersion relation determining co(k) is thus given by 

- ~ k 2 = C o [ ( k 2 + ~ + i k E k l l ) I / 2 + ( k 2 + & - i k E k u ) a / 2 ]  -~ (4.1) 

where c3 - - iD-lco,  so that f ( k ,  t) oc exp(DoSt). Without loss of generality, 
we assume henceforth that E >  0, ~b~ > 0, so ke = 2D-1Eq~oo can be taken 
as positive. Let us study this equation in the complex & plane. There are 
two branch points at b =-- - k 2 +  ikEkll and b * =  - k  2 -  ikEkll besides the 
one at infinity. The branch cuts are chosen to extend from the branch 
points to - ~  parallel to the real axis (as shown in Fig. 2). A close 
examination shows that (4.1) can be satisfied at one and only one point on 
the negative real axis of eS. Therefore, the planar interface parallel to E is 
stable for all wavevectors k. The relaxation mode oS(k) is given by one of 
the roots of the following equation, which is obtained by squaring (4.1) 
twice: 

O~ 4 - -  4k4~2~ 3 - 4k6~203 2 - 4(k4~2kektj) 2 = 0 (4.2) 

This has two real roots and two complex roots; only the real and negative 
root is physical. We are primarily interested in the relaxation modes under 
a long-wavelength deformation, so the small-k behavior of (4.2) is con- 
sidered. The finding of an analytic expression for the roots of (4.2) can be 
simplified by the following observation: simple power counting shows that 

7 There  are no cellular states as in Ref. 15, due to the absence of a concentration gradient at 
q-oo. 

s From the explicit exponentially decaying form of G, such a linearization overestimates the 
strength of coupling for large deformations f 
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the odd term proportional to O~ 3 is always the least dominant one. It could 
only introduce correction in powers of k 2. We thus drop it, and the 
algebraic equation becomes quadratic in 05 2 , which can be easily solved to 
give 

052 ~ 2k6~2 + [(2k6~2)2 + (2~2keklrk4)2] 1/2 

= 2k6~ 2 + 2k4~2[k 4 + (kEkll)2] 1/2 (4.3) 

of which the negative root is the relaxation mode for a small deformation 
of wave vector k. Note that the new length scale kE 1 always couples to kLi, 
and that the ratio of the two terms inside the square roots varies over a 
large range of values as E changes: 

ratioX/2=keLklll kElkH[ 
~ = k ~ ,  + k 2 

~(kE/Ik• ) for k~l~k  2 (4.4) 
[(ke/]kllL ) for k~l >>k 2 

we consider two limiting cases: 

1. Small E, such that kE~  Ikll[ and kE'~ [k• Here the relaxation 
occurs on scales so much smaller than k~ 1 that the presence of E is hardly 
felt by the interface. The relaxation modes for (I k lll/lk • [ ) (kJIk  J_l ) ~ 1 (i.e., 
IkLll/lkzl is not too large) take the usual form of model B: 

co(k) = - 2 D k 3 r  i 2 2 1~ zDkEkllk + O(k 4) (4.5) 

where we denote the relaxation rate as co(k): f (k ,  t) ac exp[co(k)t]. The 
leading term of (4.5) is just the result of Langer and Turski (13) in the 
absence of asymptotic concentration gradient. The term proportional to E 2 
is of order kll in the physically interesting case of k~l >> k~, whose negative 
sign simplies a faster decay than model B. Obviously, since k E always 
couples to kll, the same k 3 behavior is observed whenever the deformation 
varies only in the orthogonal directions, i.e., when kit = 0. So from now on 
we only consider kll #0 .  

2. Large E, such that ke>> Iklll and k e ~  Ikj_l. The general expression 
simplifies when k~lktll/k2>> 1, which is true when Iklll/Ikil is not too small: 

co(k) ~ - (2ke )  1/2 D~k 2 [kill 1/2 Dk4~ (2kekll)l/2 (4.6) 

When the deformation varies predominantly along E, we have k~l >> k ] : 

co(k) ~ - (2ke )  1/2 D~k~( 2 (4.7) 
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which shows that the presence of large E is approximately realized as k~ 2 
replacing klj/2 in the relaxation mode, resulting in a faster relaxation. 

Within the linear approximation we can superpose two small defor- 
mations: one varies predominantly along E and the other orthogonal to E, 
with characteristic wavelength denoted as/. The above results indicate that 
at later times, of the order of t >> [(2kE)1/2~1-5/2] -1, the deformation along 
E would decay to an amplitude negligible in comparison to that 
orthogonal to E. Similar faster temporal decay of fluctuations along E was 
also found near the critical point as in Ref. 6. 

To conclude this section, let us compare the relaxation for model A 
(i.e., without local conservation), for model B (i.e., E = 0 with local conser- 
vation), and for the case when E # 0 ,  expanded in small k: 

t 
- Fk  2 (model A) 

-- 2D~k 3 (model B) 
co(k)~ ( -(2kE)l/2D~-k2lkll] ~/2 (Ev  ~0) 

Mathematically, the origin of the slower decay characterizing a system with 
conservation is contained in the (k, co) dependence of the Green's function. 
As an example, co(k) for model B is determined by 

_ ~k ~ = co(k) 
2D[D-lco(k)  + k 23 1/2 

For small k the k 2 inside the square root dominates, giving 
co(k) o c - k  3. In model A the entire denominator is absent, hence 
co(k) ~: - k  2. 

The Green's function describes nonlocal interaction among interfacial 
degrees of freedom at different space-time points for systems with locally 
conserved density. Physically, such nonlocality arises from the necessity of 
the transport of materials in modifying the interface. Deformations at 
different space~time points do not relax independently; they are coupled 
together through G. Therefore, a better understanding can be gained by 
examining the explicit form of G(y• Yll, t lye,  Yll, t'; 010) as in Section 3, 
where we have shown that for any given t - t ' ,  the coupling in the 
corresponding important range along E, as determined by the model B 
behavior e x p [ - l y l l - y l l l 2 / 4 D ( t - t ' ) ] ,  is suppressed by the factor J, 
whereas the coupling is enhanced for large l Yll-  Y]j I. Along y• the non- 
locality decays as in model B, with G or exp[-fy• - t')]. To 
see this effect of E on the relaxation, let us consider the linearized equation 
of motion 

- ~ W f ( y , t )  d t ' d a - l y G ( y ,  t l y ' , t , O I  ) f ( y ,  t') (4.8) 
3 
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In the momentum space, a deformation with a definite wavevector is just 
sinusoidal in shape. For model A, 

G(y, tLy', t'; 010) ~: 6 d - ~ ( y - y ' ) ~ ( t - t  ') 

the interaction is local, so that the velocity j~(y, t) directly responds to the 
curvature o f f  at (y, t). This leads to c0(k) ~ - k  2. 

Now if there is small nonlocality, as arising from local particle conser- 
vation in model B, the j" at neighboring points (y', t') of (y, t), which have 
the same sign as f(y, t), would also contribute to the integral on the rhs of 
(4.8) and it competes with ]'(y, t). This decreases j'(y, t) relative to that of 
model A. The specific (k, co) dependence of G then gives co(k) oc - k  3 in 
the small-k limit. 

For large E, consider a particular Fourier mode of deformation 
(sinusoidal) of a definite wavevector k =  (k• =0,  kll ) with kil ~ k e ,  since 
anomalous decay is observed only when k~l >> k~ and kll ~ ke. The situation 
is illustrated in Fig. 4. Modification of model B relaxation is a direct con- 
sequence of the suppression of nonlocality at short distances (e.g., within 
the crest "a"), and enhancement at long distances (the dominant regions of 
which are those in the neighboring valleys "b" and "c"), where the interface 
velocities have opposite sign to that at "a." Both these two effects thus 
contribute to speed up the relaxation of the interface relative to that of 
model B. The detailed (k, co) dependence of G then determines co(k) as in 
(4.3). This heuristic argument illustrates that any nontrivial modification of 
model B behavior by E can only be observed at long time and large 
longitudinal distance compared to those scales introduced by E. 

Intuitively one does not expect E to change the relaxation along the 
orthogonal directions, because the induced current is unidirectional along 

E > 

(] 

< > 

Fig. 4. A sinusoidal deformation of wavelength k l~l of the plane interface. In the case of large 
E, kll 41ke. 
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E, reflecting in the coupling to ktl alone in the equation of motion. This 
transport of particles along E somehow competes with the usual model B 
nonlocal interaction. This manifests explicitly in the competition between 
the two terms inside the square root of (4.3). 

5. S T A B I L I T Y  OF A T I L T E D  I N T E R F A C E  

This is the only section that deals with an interface not parallel to E. 
In Section 2 the interface equation of motion is derived by expanding the 
bulk equation about a stationary state, which describes a planar interface 
parallel to the driving force. The planar interface is subsequently shown to 
be stable against small deformation. On the other hand, it was found ~ 
that there exist stationary solutions that correspond to a tilted interface. 
Nevertheless, its stability is not yet explored, due to the complexity 
inherent in analyzing a fourth-order nonlinear differential equation. We 
therefore derive in this section a kinetic equation for the interface by 
expanding the bulk equation about a presumed solution ~b~(u), which 
describes a tilted interface. Let 

~(x ,  t) = ~c(u)  + ~,(x, t) 

where ~ represents the deviation about ~bc(u), with u = ( z - f l  Yll)/x/~ and 
gl = 1 + f ~ .  As before, f~ is the tangent of the angle of inclination. For 
small deviation ~ the bulk equation can be linearized to get 

-~,=2E(~c(u) aitO-2E (~'~(u)~,+(DItO~t+D• (5.1) 

in which fourth derivatives are dropped because the effective diffusion coef- 
ficients Dot - riD + a 2 1 2 + ~g~• are gatt ~b~ and D• --r• both positive, where 
as  and air account for anisotropy in the derivatives coupled to g~b 3. For 
simplicity, from now on we only consider the situation in two dimensions; 
extension to higher dimensions should be straightforward. It is natural to 
perform a coordinate transformation from (yi l ,z)  to (u,v), where u 
measures the normal distance from the planar interface, and 
v =---- gll/Z(yll +f~z) measures along the interface, as shown in Fig. 5. This is 
the intrinsic coordinates for the interface. Denote ~(yti(u, v), z(u, v)) as 
~o(u, v); (5.1) becomes 

t3 ~ g a  2E 
at,p= -hE ~.(~c(u)e) + ~ ~c(u) ~oq~ 

+ (D.c3:- 2dD f~ O.O. + D~c~2) ~O + (5.2) 
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Fig. 5. 

ET 

u : f Cv) 

' Yn 

V 

U 

> 
Z 

The tilted planar interface, its deformation, and its intrinsic coordinates. Particles are 
chosen to reside on the side of positive u. 

where AD-Dtt-D_L, D , = D t i - A D / g l  > 0 ,  and D~=-Dtl-f21AD/gI>O. 
We first diagonalize (5.2) with respect to v by Four ier  t ransform;  thus, 

• rp(u, k~, t) = - 2E f l  o 1 

+(-Dvk~ + 2ADfl Du~2u)(19-1-~ (5.3) 

whose cor responding  Green ' s  function is acted on by its conjugate  
opera tor :  

gl 

1 r p ) (5.4) 
+ 2 E ~ l  1 

Here  p ~- (u, v, t). Exact ly  the same procedure  as in Section 2 leads to an 
integral equa t ion  for the interface posi t ion f(v, t). Again, the te rm propor -  
t ional to E cancel out,  leaving 
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6 fdv' [1 + (0~,f')2] 1/2 

= [ dt' dr' G(v, f , t  v'f', t'~ i~tv ' ] j ,  , t') 
:s 

1 f dt 'du'dv'G(v,f,  t lv' ,u' ,t ')~(v',u',t ')  (5.5) 

Now we first have to solve (5.4) for G, and then study the stability of 
the f = 0 solution of the linearized equation. We shall not go through the 
details finding G, which is nothing more than matching exponential 
solutions at boundaries. Again a low-temperature approximation ~bc(u) 
q~ [ 2 0 ( u ) -  1 ] is used. To linear order in f, we only need 

1 1 
G(k~, ~o; u = O lu' = O) = (5.6) 

Duq+p  

where p and q are the 
positive real parts: 

roots of the following quadratic equations with 

gl X/gl / 
1 DllikEk~)=O 

(5.7) 

ke f l  "] 

1 DitikEkv) = 0 (5.8) 

It is then easy to get 

~DIIkEfl+ DIjD• a(kv, o;ol0)=[ \ / 

1 11/2 
x/-~l DII D• ikEk ~ -- D,io) 

[ ( D ) , k E f l ~ 2 1  ql/2]--I 
+ DI,D• \ 2x/c-~1 j +- -~ lD, ,Di ikek~ . -D,  io)j f (5.9) 

and the relaxation rate co(kv) in exp[e)(kv)t ] is obtained by solving 

- ~k~ = e)(kv) G(kv, ie)(kv); 0[0) (5.10) 
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T o  see whether  (5.10) has a solution for co(kv) with positive real part ,  
we denote  D,co(k,) = cot + icoi. The square roots  are now of the form 

R1/+2e i0+-/2 = Ea 2 + b 2 + ogr + i(coi + c)]  1/2 

where we denote  DllkEfl/(2x/--~l) as b, etc. To  satisfy (5.10) with co r > 0, we 
must  have Re G < 0. However ,  

Re G 1 = 2b + Rmcos(O/2) 

= 2 b + [ R + ( l + c o s 0 + ) / 2 ] l / 2 + [ - R _ ( l + c o s 0  )/2] 1/2 

= 26 + ( l / x / 2 )  { [ (a 2 + b 2 + cot) 2 + (toe + e) 2 ] 1/2 + a 2 + b 2 + co r }1/2 

+ (1/x/~)  { [ ( a  2 + b 2 + cor)z + ( c o i _  c)2] 1/2 + a 2 + b 2 + cot} 1/2 

which shows that,  for co r > 0, Re G -1 > 2b + 2(a 2 + b2) 1/2 > 0 for all values 
of b. Therefore,  there cannot  be solut ion with co, > 0. Thus,  a tilted inter- 
face is always stable against  small de format ion  of any wavelength kv, at 
any or ienta t ion f~. We expect that  this result also holds in higher dimen-  
sions. 

Relaxation Modes 

Let us now use (5.10) to determine the re laxat ion modes  for large- 
wavelength deformat ion.  We shall look for a real ~o(kv) solution. 

Let  f2=og(k~)/k2~ and b=DiikEfl/2X/--~l. Dropp ing  higher order  
terms in k~ and  squar ing (5.10) twice, we obta in  the relaxat ion m o d e  f rom 
the negative root  of an algebraic equat ion  

_.l ~,'~4 _~_ bQ3 -t- (b 2 - - O l i D •  2 + 2b(2b 2 -- OllD• (2 
4 

2 2 I + D I I f 2 / D •  2 2 (5.11) 
- DIID • 1 + f2  kEk ~ = 0  

For  infinitesimal inclination f l  the leading terms are the first and the last 
one, giving the k~/2 behav ior  found in Section 4. F o r  any finite f l ,  b2 is 
much  greater  than  k~. Fo r  finite f l  > 0 ,  so b > 0 ,  (5.11) gives 

t2 = 4b + O(k 2) (5.12) 

leading to an co(k~) oc - k  2 behavior .  On  the other  hand,  for finite f l  < 0 ,  
we find 

1 n2 t32  k2],.-2 I+DII  f2 /D•  (5.13) 
g2 ~ ~b-3 ~ l l~•  r l + f l  2 
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corresponding to ~(kv) oc - k  4. Since the anisotropy in the diffusion coef- 
ficients are not crucial, we simply denote both by D and the results are 
neatly summarized as 

co(kv) = - D k  2 CkE(f,/x/-~) F(k~/k~, f~/~/~) (5.14) 

where F(x, y) has the following asymptotic behavior for x ~ 1: 

t 21/ZXl/4y -1 y --* 0 
F(x , y )~  2 + O(x) y = O ( 1 ) > 0  (5.15) 

- 2xy -4 y = O ( 1 ) < 0  

Equations (5.14) and (5.15) are the principal results of this section. In par- 
ticular, this implies that for the configuration of Fig. 6a, the relaxation 
behaves like model A, whereas for that of Fig. 6b, it is even slower than 
model B. 

Physically we have seen that the relaxation is strongly influenced by 
the range and strength of the nonlocal interaction, which is specified 
entirely by the Green's function. We should therefore gain better 
understanding of the above anomalous behavior by studying the detailed 
form of G(y, t). To illustrate, let us evaluate those for the two limiting cases 
depicted in Fig. 6, when the interface is orthogonal to the driving force. In 
these configurations G is obviously isotropic with respect to the transverse 
( d - 1 )  dimensions. From (5.9) we get, after generalizing kv to ( d - 1 ) -  
dimensional k, 

G(k, o9; 0 , 0 ; f l =  +ov)=[+D, ,ke+2(D, ,DLk2+~k2D~, - iD , , co )m]  -1 

(5.16) 

E 

I 
Fig. 6. 

Co) Cb) 
(a) When 0 = 90 ~ the relaxation is model A like; whereas (b) when 0 = - 9 0  ~ it 

behaves as k~. The shaded areas correspond to particle-rich phase. 
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and 

1 Ir ds esDiit 1 
G(k , t ;OlO;f ,= - - - ~ ) = 2  v ~ +kE/2+(D.k2/Di l+�88 +s) ~/2 

(5.]7) 

There are branch points at s =  -D• ~ 2 -zkE and at infinity; and only 
for f~ < 0  is there a pole at -D~k2/DLI. The appearance of this pole is the 
mathematical reason for the ultraslow decay o(kv) ~ -k~  found for f l  < 0, 
as we will see briefly. The contour integrals are easily evaluated in a 
standard way. For t < 0, G = 0 as usual. The results for t > 0 are 

G(k, t; 010) = �89 - f l ) k e  e-D• 

-- (4rcDil t)-1/2 e x p ( - k 2 D •  t - k2 D H t/4 ) K( k ~ D IL t/4 ) 

(5.18) 

where O(x) is the step function, and 

dye Y y + x  

is a mild function of its argument, with K(0 )=  1. The exponential factor 
dominates the dependence on k2eDii t. The first term is the contribution of 
the pole, as mentioned. Further Fourier-transforming to real space gives 

G(y, t; 010)=  G(y, t; 010; E=O)[O( - f l  ) ke(rcDllt) 1/z 

+ K(kfDll t/4) exp(-k2eOll t/4)] (5.19) 

where G(y, t; 010; E = 0) is just 

( l _ . . . . . ~ ( d - 1 ) / 2 (  1 "~l/2e_Y2/4D• t 
4reD • tJ \4 - -~ l t  ] 

Dll couples to ke and D l  couples t o  k 2, as expected. Similar argument used 
in Section 4 can now be applied for a qualitative understanding of the 
anomalous relaxation. It goes as follows: 

1. For sufficiently large and positive f l  (e.g., Fig. 6a), the level of 
nonlocality is suppressed severely by the factor exp(-k2eDli t/4), leading to 
a truncation of the important range of nonlocality down to O(k~l), both 
spatially and temporally. Thus, for long-wavelength deformation k -1 >> k~ 1, 
the kinetics occurring near the interface approaches that of model A for 
large E. This explains why ~o(kv)~ - k  2. 
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2. For the opposite configuration with finite and negative f t  (an 
extreme example is as shown in Fig. 6b), the overall strength of nonlocality 
is enhanced by a factor of ( kEDut )  I/2 for time and length scale (Dut )  1/2 
> k e  ~ and y > k~ ~. For a sinusoidal deformation of wavelength k -l ,  the 
important coupling to the relaxation at any given point comes from a 
region of size k -~ and time (Dk2) -~ centered about that point. The 
relaxation is therefore significantly slowed down, as evidenced by the way 
these nonlocal couplings enter the equation of motion (5.5). 

At the microscopic level, we indeed expect physically a configuration 
with f~ > 0 to relax more rapidly than one with f l  < 0, because the particles 
near the interface for f l  > 0 have more neighboring vacancies to move into 
along the direction of E. 

6. D E C A Y  F R O M  AN I N I T I A L  D E F O R M A T I O N  

In Section 4 it was shown that the planar interface parallel to E is 
stable against small deformations of all wavelengths. Here we examine 
explicitly how a tilted interface relaxes from an initial configuration in the 
absence and presence of the driving force. The possible effect of the boun- 
dary is also discussed. 

We consider an initially flat interface ( f =  0 for t < 0). A sudden kick 
at t = 0 deforms the interface into a shape given by the function f (y ,  t = 0). 
We are interested in how the interface relaxes toward the planar con- 
figuration. Before we go on, let us emphasize that solving an initial value 
problem for an integral equation may lead to mathematical difficulties. In 
contrast to solving a differential equation, specifying the initial conditions, 
namely the function f and its derivatives at t = 0, does not in general lead 
to a complete knowledge of the function for t > 0 .  To acquire such 
knowledge we need in principle the complete history of f for all t < 0. 
Therefore, in the hope of gaining some qualitative understanding of the 
relaxational properties of the interface, it is intructive to consider even such 
a somewhat unrealistic sudden action on f at t = 0, in order to specify f for 
all t < 0 .  

To find f (y ,  t), we will use the method of Laplace transform. Let us 
first define 

j~(k, s) = dt e-S'  f (k ,  t) 

as the Laplace transform of f after Fourier transforming with respect to 
the (d-1)-dimensional  coordinates y. Using the fact that the Laplace 
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transform of f (k ,  t) is - f ( k ,  O)+ sjr(k, s), our linearized interface equation 
gives 

Jr(k, s ) =  1 f (k ,  t = 0 )  (6.1) 
s + ~k2(~(k, s; 010)-1 

where 

1 1 
010) (6.2) 

trtK, s; = D (k 2 + D - i s  + ikEkll) 1/2 + (k 2 q- D - ~ s -  ikekl l )  1/2 

Note that jr(k, s ) / f ( k ,  t = 0) is just the linear response function to an 
external field that would couple to f linearly in a Hamiltonian. An example 
of such a field is an external magnetic field for spin systems. The pole of the 
response function determines the relaxation mode as found in Section 3. 
The time development of f is given by the inverse Laplace transform 

f (k ,  t_..._.~) = [ ~ . e S , {  s + D1/2r + s + iDkEklt)  1/2 
f (k ,  O) Jc zz~t 

+ (Dk  2 + s - iDkEktl)  1/2] } -1 

It(k, t) (6.3) 

where C is a contour in the complex s plane, lying to the right of all 
singularities of jr(k, s). Note that It(k, t = 0 ) =  1 and It(k, t < 0 ) = 0 ,  as 
should be the case. 

From now on, in this section, we restrict ourselves to two dimensions, 
so x = (Yll, z). We wish to consider the evolution of an initial shape that 
reduces to that of a planar tilted interface at sufficiently small length scale. 
Two examples that are simple enough for computing the inverse transforms 
are (see Fig. 7) 

and 

On a length 
f(Ytt, 0),~ YH" 

f(YLI, O) = ylle -Klylll 

f(Ylt,  O) = (l /x) sin Kytl 

scale ~K -1, both approximate a tilted interface as 

We focus on the time evolution of the central planar portion of the 
interface, whose size is much smaller than K -1. Hence, we consider the 
region ]Ylt[ ~ K 1. To include all important nonlocal interaction, we need 
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E 

(a) Yij ,Dt 
< ) x-t 

Y, 
(b) y~j, Dt 

K - I  

Fig. 7. The initial shapes of the deformed interface chosen for calculating their time 
evolution. (a) A sinusoidal shape, which is preserved under time development; and (b) a shape 
consistent with the periodic boundary condition. The separation of length scales is shown 
schematically. 

to consider t such that (Dt)l/2~ ]Ytl]. Thus, for large E, we have the 
following order of the length scales: 

' ~ k s  "1 ~ ([Ytl[, (Dt) 1/2) ~ ~c-1 

The important Fourier modes contributing to the time evolution of the 
planar portion are clearly those with Iktt ] ~< ~c. With the wide separation of 
length scales in mind, the contour integral of (6.3) is computed as the 
difference of the pole contribution and those along the branch cuts. For 
comparison, we have also computed for E = 0, which is listed together with 
that of Eva 0 as follows: 

Ic(kl[, t) = Ipole(kll, t) + I b . . . .  h(kH, t) 

(1 +Dk~2/p+ "") exp(pt) (Eva0) 
Ipol=(k H, t)= (1-Ikfl l~+ ...)exp(-2k~l~Dt ) ( E = 0 )  (6.4) 

822/50/1-2-28 
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where p = -2(2kE)~/2r .... The branch-cut integrals are 

lb . . . .  h(kl l ,  t )  

-2k~l~ [exp(_k~lDt)  ] 1 dp exp(-pkEIki l lDt  ) (1 + 
~C ( kek l l )  1/2 

x [(1 _p2)  cos(kelkli lDt)+2p sin(kelkll I Dt)] ( E # 0 )  (6.5) 

fo g V/-fi ( E = 0 )  21kll[rc ~[exp(-k~lDt  ) dp [exp(-pk~lDt ) (1 + p)2 

The results for the two initial shapes are then as follows. 

1. f(Yll ,  0 ) =  (l/K) sin/s Its Fourier transform is simply 

f(kll ,  O) = (n/#c)E6(kll-/s - 6(kit +/s 

which gives the shape-preserving evolution: 

f(Yll,  t) = r J + ~o dkli e ikl' y,L f(klt ,  0) Ic(kli, t) 
_~ 2n 

1 
= Ic(/s t ) -  sin xylj (6.6) 

/s 

A natural dimensionless parameter emerges: ke/s Thus, in the large-E 
limit in the sense that kE/s >> 1 [note that this equals ke(Dt) 1/2 tc(Dt) ~/2, 
the first factor ,> 1, while the second ~ 1], we evaluate the integrals over p 
by expanding in this small parameter for E ~ 0, and in tcZDt ,~ 1 for E = 0, 
to get 

lc(X,t)=~l-(4/x//-Yrc)/s163 ... ( E = 0 )  (6.7) ll 2(ke/s 1/2 ~/s + ... (E =/: O) 

Here the two terms for E r  0 comes from the pole integral, whereas for 
E = 0  the "1" comes from the pole piece and the second term from the 
branch-cut piece. As kErcDt~l,  (6.7) explicitly displays the faster 
relaxation in the presence of E. 

2. f(Yll ,  0 ) =  Yil exp( - / s  [Ylll): Its Fourier transform is 

f(kll, O)= -4i/s +/s (6.8) 

which is problematic at ktl = 0  as ~c~0; this explains the necessity of 
dealing with a shape converging at Yll = ___oo, rather than just f oc YlI, in 
order to study the time evolution of the tilted interface. Here we are less 
fortunate than in case 1 because the parameter kEIklilDt in the integrand 
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of ~ dp in (6.5) is not necessarily large, as Iklil is integrated from 0 to O(x). 
For this reason the computation for kexDt  >> 1 is not yet successful, so we 
only report that for the limit k e x D t ~  1. Note that for large kE this 
corresponds to the small-time limit, namely 1 ~kE(Dt)l /2~ 1/x(Dt) 1/2. In 
contrast to case 1, where the influence of E on the relaxation shows up at 
the lowest order nontrivial terms, here we must compute the second-order 
effects. We focus on the planar portion as before by expanding the factor 
exp(ikllYrl ) into l +ikllytl + .... By symmetry all even terms vanish on 
integrating over ktl. The results are 

f(YH, t) 
~ yIIF1-- Cl :K2(D')I/2--CI ~('3D' ~1 ;"? -~- O(y~[) 

= [Yl l [1-c l~ce(Dt) l /e -c2~(ke~c)  / x Dt+ . . .]  + O(Y~l ) 

( E = 0 )  

(E#o) 
(6.9) 

where the coefficients cl, c2, and c~ are all of order unity. Similar to case 1, 
faster relaxation for E # 0  is exhibited in the rotation of the interface 
toward the configuration parallel to E (the bracketed quantities are the 
tangent of the inclination). 

Note that in the limit ~c ~ 0, corresponding to the curved portions of 
the interface being infinitely far away from our region of interest, we get 
from both case 1 and 2 the result f (Yll ,  t )=f (Y l l ,  0)=  Ytl- This corre- 
sponds to a zero mode of the linearized equation of motion. However, 
although any f linear in the coordinates is a stationary solution to the full, 
nonlinear equation (2.10) (in fact, it is the only family of nontrivial 
solutions), it is unlikely to remain a zero mode, as the nonlinearity in G 
significantly modifies the linearized dynamics for large deviation from a 
planar interface, such as f = YH- 

On the other hand, the appearance of this zero mode is fully expected 
' for  E--0.  We can easily show that the equation of motion is rotational 
invariant when E =  0, and that the relaxation modes co(k) for deformation 
about a planar interface are independent of its angle, i.e., the planar inter- 
face is equally stable for any orientation. For E # 0, E apparently breaks 
the rotational invariance and its induced anisotropy is manifested in co(k), 
as shown in Section 5. 

Two comments are in order here: 

1. Physically we can interpret the presence and the influence of the 
curved portion (represented by y~ terms) on the planar part as the boun- 
dary effects of a finite system on a tilted interface. The largest length x-1 
then corresponds to the system size. The limit ~c ~ 0 is then the situation 
when we only look at time and length scales very much smaller than that 



430 Leung 

of the system size, so that the effect on the time evolution of a tilted inter- 
face is not yet felt. In fact, case (2) seems to model the effect of the periodic 
boundary condition (PBC) along Yll" In the context of the linearized 
equation, this then implies that PBC has a stabilizing effect on the interface 
parallel to E. Thus, our result indicates that the planar interface parallel to 
E for T < Tc found in computer simulations may merely be an effect of the 
periodic boundary condition imposed on the density variable ~b. Whether 
this remains true including nonlinearities requires more extensive 
examination. 

2. Another point to note is that for finite x the faster rotation of the 
interface toward its parallel position appears only for k E>  ~c. This is 
intuitively obvious if we interpret ~c 1 as the finite size of the system. The 
particles would not notice the presence of E if E is so small that its 
associated length is greater than the system size. 

7. R O U G H N E S S  OF T H E  I N T E R F A C E  

Although we have shown that the planar interface is stable against 
small deformation, it could be rough even at low temperature due to ther- 
mal fluctuations. The degree of the roughness is conventionally measured 
by the quantity 

o) 2 - G(y, t l y, t) = ( f2 (y ,  t) ) (7.1) 

where ( . . - )  denotes an average over noise in the stationary state. 
The roughness of the interface depends on the number of dimensions 

of the system. It is important to determine the exponent that characterizes 
the divergence of w with the system size L: w ~ L ~ When 0 < 1, we have 
w/L  ~ 0 as L ~ oo, so that the interface is effectively smooth. The lower 
critical dimensionality dt can be determined by the condition O(dt)= 1, (~8) 
which is when the interface wanders all over the system so that it destroys 
the ferromagnetic order. For example, for continuum models, w diverges 
for d~< 3 in the pure Ising model. (16) At d =  3 it diverges logarithmically. 
These are true for all temperatures below T~. When lattice effects are taken 
into account, one finds (~7) that there exists at d =  3 a roughening transition 
temperature 0 <  TR< Tc such that the interface is rough only for 
TR< T <  T c. Thus, the continuum interface model fails below TR. 
However, we are concerned here neither with the effect of a lattice nor with 
that of the roughening transition. 

In the following we calculate the width w for the driven diffusive 
model, starting from the linearized equation of motion for an interface 
parallel to E. We only managed to work at the linear order in f The 
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ignored nonlinearities come from two sources: the curvature on the lhs of 
(2.10) and that contained in G. The correction for the corresponding model 
A calculation due to the former is argued (16) to be merely an amplitude 
change. Similarly, those nonlinearities in G for model B do not change the 
exponent 0 obtained from the linear equation, since model B shares the 
same statics with model A. Unfortunately, we are not yet able to produce a 
similar proof for the driven model. Let us proceed and see what we can get. 

To calculate any correlation function, we need the correlator of the 
noise q(y, t) in (2.10). This can be derived in a straightforward way in the 
linear approximation if we know that of the bulk noise ~. The interfacial 
noise is given by 

1 fdd_ly, dz, dt, G(y, ftly,,z,,t,)~(y,,z,,t,) (7.2) r/(y, t) = 2 - ~  

The (~/r/') is most conveniently expressed in the momentum-frequency 
space. For the bulk noise, we have 

(~(k, co; z)~(k',  co'; z ' ) )  

= -22(k~j + yk~ - 7Oz 2) &(z - z')(Zrr)d6 a-  l(k + k') 6(co + co') (7.3) 

where as before k = ( k t l , k i )  is (d-1)-dimensional .  The parameter 7 
accounts for anisotropy induced by E. After linearization by setting f = 0 in 
G, we use 

t/(k, co)= 1__}___ f dz' G(k, co; 0dz') ~(k, co; z') (7.4) 
2~boo 

from (7.2), and the equation obeyed by G, 

[-ico+DkZ-DO~,-E~c(z')ikij] G(k, co;O[z')=c~(z') (7.5) 

to obtain, after a little algebra, 

(,7(k, co) ,1(k', co')) 

27 (2rc)a6a_l(k+k,)&(co+co,) 
4DO~ 

x {2Dk~(7-1--  1) f dz' G(k, co;Olz')G(-k, -co; 0[z')  

+G(k,  co; 010) + G ( - k ,  -co;  010)~ (7.6) 
) 
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Using the explicit expression for G, one finds for the integral on the rhs 

f dz' G(k, 01z') G ( - k ,  -co; 0[z') co; 

= [(k 2 - iD lco + ikekll)l/2 + (k 2 + iD-lco _ ikekll)l/2] -1 

x [ ( k 2 - i D - l c o - i k e k l l ) l / 2 + ( k 2 + i D  lco+ikekll)l /2] -1 (7.7) 

Thus, in the absence of the anisotropy, 7 ~ 1, the correlation of the noise is 
just given by the Green's function, even though we started with a f- 
function correlation in the bulk noise. It follows that the constraint of local 
conservation generates finite-range correlation in the interracial noise. 

Let us now derive the correlation function and the linear response 
function of f using (2.10) and (7.6). We can either get these from the 
equations of motion of Gff(y, t ) -  ( f ( y ,  t ) f (O,  0))  and that of ( f ( y ,  t ) )  in 
the presence of an external field, or equivalently from the generating 
functional (the Martin-Siggia-Rose functional) as in Ref. 6. Whichever 
method one uses, the results are 

1 
6fy(k, co) = - ico + k 2 r  co) (7.8) 

2y 
Gfi (k  , co) - 4 D ~ L  ~k 2 [1 + 2(,, ,-1 - 1) k~i r ( k ,  co)] 

x [Off(k, co) + a f f ( - k ,  -co) ]  (7.9) 

where 

G-l(k,  co) = D [ ( k  2 - iD-lo9 + ikEkll)l/2 + (k 2 _ iD-lco _ ikEkll)l/2] (7.10) 

and 

F(k, co) = [(k 2 - iD 1co + ikEkll)l/2 + (k 2 + iD-lco _ ikEkll)l/2] - i  

x [(k 2 - iD-lco - ikEkll) 1/2 + (k 2 + iD -1co + ikekH) 1/2] -1 (7.11) 

To establish a relation between Gfy and the linear response function, we 
note that an external field h(y, t) that would couple to f in a Hamiltonian 
couples to j7 in an MSR action. From this, for the linear response defined 

by 

( f ( y , t ) ) = f + ~  d l y ' R ( y ,  t l y ' t ' ) h ( y ' , t ' ) + O ( h  2) (7.12) 
- - o o  

it follows that 

R(k, co)= ({/a) G l(k, co) Gff(k, co) (7.13) 
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where cr is the macroscopic surface tension. The fluctuation-dissipation 
theorem @/(k, o )  oc (1/co) Im R(k, on) is satisfied only if the anisotropy is 
removed: 7 = 1. This agrees with the finding in Ref. 6 regarding the critical 
behavior. 

Returning to our question of roughness, to evaluate S do), we note 
from Section 6 that 

f (k ,  t) dco 
f (k ,  0 ) -  f ~-e-i~ co) + Gy/( -k  , -co)]  

Hence it is unity for t = 0. This immediately gives 

Gff(k, t = 0) = 4Dq~ ~k 2 [ 1 + 2(7 - 1 ) k~ I(k)] 

where 

I ( k ) =  f - ~  F(k, co)[Gyf(k, co)+ Gyf( -k , -co)]  

(7.14) 

(7.15) 

Though I(k) is complicated to evaluate, one realizes I(k--, 0 )=  0, so the 
infrared property of the first term in the square brackets of (7.14) 
dominates. Thus, 

0):2 =-- Gff(y --- 0, t = 0) 

fL dd- lk = _~ (2~)d I Gff(k, t=O) 

fL dd- lk -~ k------T--~ L 3-d (7.16) 

giving d /=  1 as for E = 0. In computing S dd- lk, we have assumed that the 
dominant fluctuation has k l l~k  • which is unlike that in the ciritical 
theory, where kil ~ k 2 . This assumption is consistent with the range of non- 
locality contained in G, wich gives exp[-(y~r+y])/4Dt ] apart from a 
multiplicative enhancement factor (1/kelyltl) exp(kelYtll/2). 

The question of whether the interface is effectively smooth in two 
dimensions, in the sense that co/L ~ 0 as L ~ c~, is clearly important in 
interpreting numerical results. For a system size of order 30, the roughness 
of the interface is negligibly small at the resolution of 1 (i.e., a lattice site). 
So it is difficult to draw any conclusion regarding the roughness of the 
interface from available numerical findings at two dimensions. More exten- 
sive numerical work focused on the interface is needed to test the validity 
of this linear result. 
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8. CONCLUSION 

Here we briefly summarize our results: a central feature of the interac- 
tion of the interracial degrees of freedom is that of nonlocality--the motion 
of any given part on the interface couples to that of all others, with the 
strength of coupling decaying exponentially to zero at long distance. For 
small deformations of the interface, we found no instability to drive the 
system toward the nonlinear regime. Thus, for our purposes we are justified 
in working with the linearized version of the highly nonlinear equation. 

Starting from a kinetic equation of the tilted planar interface, we were 
able to show that the interface is stable for small deformations of all 
wavelengths. It is always stable (marginally) against normal translation, 
which represents the zero mode of the translational invariance of the bulk 
equation. We found that the relaxation of the interface has strong orien- 
tational dependence (i.e., f l  < 0 is very different from f l  > 0). These were 
understood qualitatively as a consequence of the influence of the driving 
force on the coupling of neighboring parts of the interface. 

We demonstrated explicitly the effect of the external field on the 
relaxation after an initial deformation on a planar interface parallel to E. 
The field is seen to speed up the relaxation if it is sufficiently strong-- 
determined by a comparison of length scales. In the case of an initial defor- 
mation consistent with the periodic boundary conditions that are used in 
all computer simulations, the results seems to suggest that these boundary 
conditions act to stabilize the interface, favoring a parallel orientation with 
respect to E. 

The roughness of the interface parallel to E, which arises from thermal 
fluctuations, was shown to linear order in the interfacial position to diverge 
with the system size in the same way as for E =  0. However, the validity of 
this result beyond linear order is not yet proved. Should this be true 
generally, it would suggest that the lower critical dimensionality dt remains 
as 1. 

APPENDIX.  DERIVATION OF THE GREEN'S FUNCTION 
FOR E ~ 0  

Here we give the derivation of the Green's function for E ~  0 of an 
interface parallel to E. The results are used in Section 3. The Green's 
function G is defined in Section 2 by the following equation: 

[-c~/~t-DV2+2E~(z)c~tl] G(p'[p)=6(p'--p) (A.1) 

where as before p -  (r; t) = (Ylt, Y• z; t), with y• being (d-2)-dimen-  
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sional. For arbitrary profile ~b~.(z), it would be difficult to solve for G. To 
make progress, we make a low-temperature approximation 

~bc(z ) ~ ~b~ [20(z - Zo) - 1 ] (n.2) 

of the same nature as the approximation 2 ~ 2 ~bc(z ) ~ q~ made in deriving the 
linearized bulk equation in Section 2. In doing this, we are limiting our- 
selves to situations where the interesting phenomena occur at length scales 
~>~, the width of the interface. However, since interfacial properties are 
generally not sensitive to the details of the density profile, (A.2) should still 
capture the essential physics that arises from the existence of an interface 
separating two opposite phases. 

Since the planar interface can be translated freely along its normal 
direction, we can arbitrarily define its position as z = 0 ,  so z0=0.  To 
simplify, we first Fourier-transform all coordinates but z to get from (A.1) 

[ - i ~ o + D k Z - O ~ Z - 2 E ( ~ c ( z )  i k t t ] G ( k , o ~ ; z ' t z ) = g ( z ' - z )  (A.3) 

where k is (d-1)-dimensional .  We now solve G subject to the boundary 
condition that G ~ 0 as ]zJ or ]z'l goes to infinity. We expect that G wilt be 
a linear combination of exponentials. We have to consider separate regions 
in z and z' and match the solutions at boundaries. First suppose z' < 0. Let 

V= - i ~  + Dk 2, v = -2E~bo~ iktl (A.4) 

Using (A.2), we thus have the following: 

1. z > 0 :  G obeys 

(-D~+ V+v)G=O 

Subs t i t u t ingG=Ae  pZ, we get p Z = D  1(V+v)  with Re p>O. 

2. z < 0 :  G Obeys 

( - D ~  + V - v ) G - - 6 ( z ' - z )  

Guided by symmetry with respect to z ~ z', we write 

G= B e x p ( - q l z -  z']) + C exp[q(z + z')] 

a direct substitution of which into the differential equation shows that 
q 2 = D - l ( V - v )  with R e q > 0 .  This expression already satisfies the 
continuity of G at z = z'. The discontinuity of the first derivative of G is 
obtained by integrating z from z ' - e  to z ' +  e with infinitesimal e, which 
gives 

D[G'(z = z' - e) - G'(z = z' + e)] = 1 
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so B--= 1/(2Dq). The coefficients A and C are determined by matching the 
boundary conditions at z = 0: 

Be qz' + C e  qz' = A 

-- qBe qz' + qCe q~' = - p A  

which give 

c _ q - P B  
q + P  

2q 
A = (B + C) e q~' = Be qz' 

q + P  

Putting all these together, we obtain for z ' <  0 

a(k, m; z ' l z )  = 

1 
- -  e - p z + q z '  z > O  
D(q + p) 

) ~ ( e  -qlz-  q + q - - P e  q(z+z') z < 0  
2Dq \ q + p 

(A.5) 

where we recall that both p and q have positive real parts for real co: 

p = (k 2 - D-lico + ikEkll) I/2 

q = ( k  2 - D  l i e )  + ikekLi) 1/2 
(A.6) 

with k e  = - 2ED-I~o~ and their branches are defined as in Section 3. 
The results for z' > 0 are obtained from (A.5) by replacing p by q and 

vice versa, and making the changes z ~ - z  and z' ~ - z ' .  
In a linear analysis we only need the following quantity: 

G(k, co; 0[0) = 1/D(q + p) (A.7) 
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